Tytuł | Ekoenergetyka – zagadnienia technologii, ochrony środowiska i ekonomiki |
---|---|
praca zbiorowa | |
Redaktorzy naukowi | Adam Cenian, Tadeusz Noch |
Auotrzy (36) | Bakun Paweł, Cenian Adam, Doerffer Piotr, Dubrovskis Vilis, Gadzialski Damian, Gołaszewski Janusz, Gołębiowska Urszula, Gonella Carlo, Gostomczyk Waldemar, Górski Michał, Hemerka Christian, Iwaszkiewicz Jan, Jasiulewicz Michał, Kowalski Przemysław, Kuligowski Ksawery, Kusto Zdzisław, Lampart Piotr, Lisowska-Oleksiak Anna, Litwin Wojciech, Łukaszek Aleksandra, Łukaszek Wojciech, Mayer Jörg, Noch Tadeusz, Nowak Andrzej P., Puzdrowski Krzysztof, Rabczuk Grażyna, Ropińska Bogumiła, Szybowska Katarzyna, Tonderski Andrzej, Wardach Izabela, Weckroth Timo, Wereszczaka Jacek, Wilamowska Monika, Wójcik Mariusz, Zagórski Marcin, Zarębski Patrycjusz |
Tytuł serii | Ekoenergetyka |
Numer w serii | 1 |
Rok wydania | 2010 |
Strony | 430 |
Format (cm) | 14,8x21,0 (A5) |
ISBN | 978-83-89762-27-6 |
Cena (zł) | 27,00 |
Informacje dodatkowe
Książka jest wynikiem wystąpień seminaryjnych podczas konferencji – Międzynarodowego Spotkania Klastrów Ekoenergetycznych w maju 2010 r. w Gdańsku. Składa się z trzech części. W pierwszej – „Biogazownie dla Pomorza”, poruszone tematy mają na celu ułatwienie podjęcia decyzji o ewentualnych inwestycjach w produkcję biomasy i biogazownie, w tym m.in. wykorzystanie biomasy i odpadów pochodzenia rolniczego na cele energetyczne poprzez stosowanie technologii wykorzystujących biogaz. Druga część książki – „Energetyka słoneczna, wiatrowa i inteligentne sieci”, poświęcona jest energetyce słonecznej, wiatrowej oraz sieciom inteligentnym. To właśnie rozwój sieci inteligentnych i sprawnych technologii magazynowania energii daje szansę na szybszy i stabilniejszy rozwój ekoenergetyki. W trzeciej części zaprezentowano konkretne technologie i realizowane projekty innowacyjne.
Wstęp
Energetyka rozproszona oparta na wykorzystaniu biomasy, wiatru i promieniowania słonecznego jest szansą na rozwój regionów północnej Polski. Pomorze Gdańskie importuje ponad 90 procent energii elektrycznej z innych regionów kraju, a bezpieczeństwo energetyczne regionu dalekie jest od stanu pożądanego. Ponadto zielona energetyka może stać się motorem gospodarczym Pomorza, szczególnie w regionach słabiej zaludnionych.
Jedną z rozważanych opcji energetyki jest rozwój biogazownictwa, wspieranego przez Rządowy Program Innowacyjna Gospodarka – Rolnictwo Energetyczne. Uprawa i wykorzystanie roślin energetycznych może zapewnić stabilizację produkcji i godne przychody, gdy dochody ze standardowej produkcji rolnej nie gwarantują stabilizacji, a ceny skupu nie są wysokie.
Seminarium „Biogazownie dla Pomorza”, organizowanego w ramach zadania „Biznes” projektu BSR „Bioenergy Promotion”, częściowo finansowanego przez Unię Europejską (Europejski Fundusz Rozwoju Regionalnego), poprzez sesje tematyczne i rozmowy biznesowe, ma na celu ułatwić podjęcie decyzji o ewentualnych inwestycjach w produkcję biomasy i biogazownie. Tematyka spotkania będzie oscylowała wokół wykorzystania biomasy (w tym biomasy i odpadów pochodzenia rolniczego) na cele energetyczne poprzez stosowanie technologii wykorzystujących biogaz.
Seminarium jest częścią Międzynarodowego Spotkania Klastrów Ekoenergetycznych organizowanego przez Bałtycki Klaster Ekoenergetyczny, w tym: Urząd Marszałkowski Województwa Pomorskiego, Instytut Maszyn Przepływowych PAN, Politechnikę Gdańską, Politechnikę Koszalińską, Gdańską Wyższą Szkołę Administracji, POMCERT, Fundację Poszanowania Energii w Gdańsku, Polskie Stowarzyszenie Biogazu i IMPLASER oraz Agencję Restrukturyzacji i Modernizacji Rolnictwa.
Druga część spotkania jest poświęcona energetyce słonecznej, wiatrowej oraz sieciom inteligentnym. To właśnie rozwój sieci inteligentnych i sprawnych technologii magazynowania energii daje szansę na szybszy i stabilniejszy rozwój ekoenergetyki.
Adam Cenian, Tadeusz Noch
Serie wydawnicze: Ekoenergetyka
Tytuł serii: Ekoenergetyka
- Ekoenergetyka — zagadnienia technologii, ochrony środowiska i ekonomiki, Adam Cenian, Tadeusz Noch (red.), ISBN 978-83-89762-27-6, Gdańsk 2010, Wydawnictwo GSW
- Ekoenergetyka — biogaz i syngaz. Technologie, strategie rozwoju, prawo i ekonomika w regionie Morza Bałtyckiego, Adam Cenian, Janusz Gołaszewski, Tadeusz Noch (red.), ISBN 978-83-89762-35-1, Gdańsk 2011, Wydawnictwo GSW
- Eco-Energetics — Biogas and Syngas. Technologies, Legal Framework, Policy and Economics in Baltic Sea Region, Adam Cenian, Janusz Gołaszewski, Tadeusz Noch (eds.), ISBN 978-83-89762-36-8, Gdańsk 2011, Wydawnictwo GSW
- Ekoenergetyka — biogaz. Wyniki badań, technologie, prawo i ekonomika w rejonie Morza Bałtyckiego, Adam Cenian, Janusz Gołaszewski, Tadeusz Noch (red.), ISBN 978-83-89762-41-2, Gdańsk 2012, Wydawnictwo GSW
- Eco-Energetic — Biogas. Research, Technologies, Law and Economics in Baltic Sea Region, Adam Cenian, Janusz Gołaszewski, Tadeusz Noch (eds.), ISBN 978-83-89762-42-9, Gdańsk 2012, Wydawnictwo GSW
- Ekoenergetyka — biogaz. Badania, technologie, prawo i ekonomika w rejonie Morza Bałtyckiego, Adam Cenian, Janusz Gołaszewski, Tadeusz Noch (red.), ISBN 978-83-89762-54-2, Gdańsk 2014, Wydawnictwo GSW
- Eco-energetics — biogas. Research, technologies, law and economics in the Baltic Sea Region, Adam Cenian, Janusz Gołaszewski, Tadeusz Noch (eds.), ISBN 978-83-89762-55-9, Gdańsk 2014, Wydawnictwo GSW
- Ekoenergetyka — biogaz. Badania, technologie i ekonomika w rejonie Morza Bałtyckiego, Adam Cenian, Janusz Gołaszewski, Tadeusz Noch (red.), ISBN 978-83-89762-77-1, Gdańsk 2016, Wydawnictwo GSW
- Eco-Energetics — biogas. Research, technologies and economics in the Baltic Sea Region, Adam Cenian, Janusz Gołaszewski, Tadeusz Noch (eds.), ISBN 978-83-89762-78-8, Gdańsk 2016, Wydawnictwo GSW
- Ekoenergetyka — biogaz. Badania, technologie, prawo i ekonomika w rejonie Morza Bałtyckiego, A. Cenian, J. Gołaszewski, T. Noch (red.), ISBN 978-83-89762-95-5, Gdańsk 2018, Wydawnictwo GSW
Zainteresuje Cię również nasze czasopismo "Eco-Energetics: technologies, environment, law and economy".
Spis treści
W monografii rozdziały autorskie (artykuły) umieszczono w trzech częściach (linki): (I) Biogazownie dla Pomorza; (II) Energetyka słoneczna, wiatrowa i inteligentne sieci; (III) Technologie i projekty innowacyjne.
Część I. Biogazownie dla Pomorza
Janusz Gołaszewski, Biogazownia rolnicza, s. 10-21
Agricultural biogas instalation
Basic information related to biogas technologies, substrates and biogas yields as well as fermentation process is presented.
Vilis Dubrovskis, Biogaz na Łotwie, s. 22-38
Biogas in Latvia
The biogas history and state of art in Latvia is described. There were 21 laboratory bioreactors and many investigations done. The biogas plant at the pig farm worked during 18 years. Projects for biogas plant using manure from farm with 24 000 pigs and 1,3 million birds were made but are not yet realised. Today biogas is produced in 6 factories. Biogas Programme 2007-2013, foreseen 2-3 biogas plants being build every year.
Urszula Gołębiowska, Produkcja rzepaku w Polsce w kontekście Narodowego Celu Wskaźnikowego (The National Index Target), s. 39-54
The production of oilseed rape in Poland in view of The National Index Target
Among liquid biofuels the most practical meaning has the biodiesel production from vegetable oil. The European Union has been introducing regulations that oblige fuel corporations to use admixture of biofuels in petrol and diesel fuel oil. That is why, the demand for the rapeseed oil is dynamically increasing. In order to cope with the market’s challenges, Poland must increase (almost twice) the acreage of the rape sowing similarly to other European countries. The research conducted among rape manufacturers in Western Pomeranian voivodeship indicate that the growth of the rape participation in the structure of sowings, and plans for next years assume its expansion to more than 30%.
Waldemar Gostomczyk, Ocena efektywności inwestycji biogazowych, s. 55-80
Assessment of the efficiency of biogas investments
Efficiency assessment, current state and perspectives of biogas energy market are described. A profile of biogas investments in Poland and factors influencing efficiency of biogas stations are discussed. Biogas power stations development should be considered in connection with the ecological state improvement and organic waste utilization.
Michał Jasiulewicz, Potencjał produkcji biogazu w Polsce, s. 81-102
Potential of biogas production in Poland
Poland’s agriculture possesses a huge potential as concerns biogas production in the fermentation process. There are many possibilities to use waste biomass from plant and animal production and from the waste production of agrarian and food industries, and also from energy tillage for the biogasification process. A creation of a system of biogas plants on such a large scale in a dispersed system will facilitate not only the use of waste of all types but will also improve the energy security. A cogeneration use of electric and heat energy is of a great importance.
Ksawery Kuligowski, Andrzej Tonderski, Mariusz Wójcik, Biogaz z alg – szanse i zagrożenia, s. 103-120
Biogas from Algae – chances and barriers
Eutrophication and greenhouse effect are environmental problems leading to water and beach pollution as well as climate change. The idea of producing biogas via anaerobic digestion of marine algae can possibly reduce both of these problems. This article presents scientific background as well as worldwide experience in this area. This includes harvesting, cultivation, anaerobic digestion of algae as well as the use of biogas and fermentation residue. Such technology creates an opportunity to solve the above- mentioned problems and provides an added value, namely production of renewable energy. However, there are several threats related to this technology such as seasonal, unstable algae supply, localization of the biogas plant in vicinity of the algae source, high costs for harvesting and transport related to high water content of the material and safe utilization of the fermentation residue due to high levels of some contaminants.
Piotr Lampart, Przemysław Kowalski, Kogeneracja w oparciu o źródła biomasy / biogazu, s. 121-144
Biomass / biogas cogeneration
The paper provides a short overview of distributed cogeneration systems fired by biomass or biogas and describes the sustainability of the emerging biomass energy sector in Poland.
Aleksandra Łukaszek, Wojciech Łukaszek, Burak energetyczny – „król” roślin energetycznych, s. 145-166
Energetic beet – a king among energy crops
The economical, technological and scientific aspects of energetic beet cultivation for biogas production are presented and discussed.
Grażyna Rabczuk, Adam Cenian, Odpady komunalne – odnawialne źródło energii, s. 167-184
Municipal waste – renewable energy source
Municipal waste is alternative energy source that is renewable, sustainable and eco-friendly and its proper management is of vital importance. The main characteristics of the European strategy concerning the municipal waste management are reviewed on the base of the relevant EU Directives. Different methods for management of the municipal waste are analyzed from the point of view of the waste hierarchy – the principal concept in EU waste policy. Available data on the waste management in EU countries are compared. The conclusions following the analysis can be summarized as follow: *) The EU promotes sustainable waste management including waste minimization and recycling. *) WtE technology is environmentally beneficial alternative to landfill. *) Member States are developing their own waste strategies – corresponding to the EU waste hierarchy with taking into account local conditions and constraints. *) In most EU countries landfilling is still the most common waste treatment method and new approach to waste problem as well as new effective and cheap technologies for waste management are needed.
Bogumiła Ropińska, Produkcja brykietu ze słomy jako źródło dochodów rolniczych – studium przypadku, s. 185-194
Production of the briquette from the straw as a source of agriculture revenues – a case study
This is obviously a very simple analysis of the production profitability concerning the straw briquette by the farmer, who uses his own and his neighbours crops. The expenses connected with purchasing briquetting press should be taken into account, the price of which varies from 50 thousand PLN to 200 thousand PLN. This results in a long period of return the investment. In this situation the availability of preferential credit can turn out to be the insufficient element of the support, the non-refundable grant for farmers e.g. from European Union funds can decide of spreading of such form of diversifying agricultural sources of income. High economic efficiency, at low, often negative financial efficiency of investments in renewable energy confirms the validity of state action to support development of renewable energy in Poland. It should be emphasized that in these considerations the aspect of the environmental benefits has not been raised, which is vitally important in general-social context, only the financial effectiveness of the project has been shown. Moreover, as the uncertain factor, the availability of raw material (wheat straw), should be taken into account, both its quantity and the price.
Izabela Wardach, Adam Cenian, Odpady biodegradowalne w województwie pomorskim, s. 195-223
Biodegradable waste in Pomorskie Region
Database for distribution of biodegradable waste in Pomerania is described and used for waste distribution analyses. The database is being developed in order to facilitate new investments in fuel and energy production as well as increase professional activity of the people in the region.
Jacek Wereszczaka, Produkcja biomasy jako energetycznego surowca odnawialnego i utylizacja pofermentu, s. 224-240
Biomass production as energy resources and utilization of digestion residue
The potential for biomass production in Poland as energy resource is considered. The question of environmental ballast and protection of agricultural regions is analysed. The problem of proper choice and substrates composition for biogas production as well as digestion residue utilization is discussed.
Timo Weckroth, Przykład z Finlandii: produkcja biogazu z drewna – układ kogeneracyjny, s. 241-243
Finish example: biogas production from wood – cogeneration
An efficient installation for gas production from wood and cogeneration (90-150kW) is presented and discussed.
Mariusz Wójcik, Andrzej Tonderski, Region Morza Bałtyckiego jako źródło dobrych praktyk dla biogazu, s. 244-256
Baltic Sea Region (BSR) – a source of biogas good practices
Some areas of the Baltic Sea (including Poland and Pomerania) face serious challenges related to development of energy sector. Others have well-developed technological and organizational solutions (so-called good practices). To avoid errors neighbors and to accelerate the development of biogas-based power regional inventory of good practices in the biogas energy has been carried out. The article contains a description of the two organizational practices (Model Jühnde and model Linköping) and several technologies, including biogas production from agricultural and municipal waste, complementary use of biogas in the regional generation of heat & power, fractionation of fermentation residue and purification of biogas.
Patrycjusz Zarębski, Atrakcyjność inwestycyjna gmin woj. pomorskiego dla przedsięwzięć gospodarczych związanych z produkcją energii ze źródeł odnawialnych, s. 257-268
Investment attractiveness of the communes of Pomorskie Province for economic undertakings related to the production of energy from renewable sources
The purpose of the present study is an attempt to create a synthetic measure for the evaluation of investment attractiveness for the production of renewable energy from a general perspective. This means that an evaluation will be conducted of the key elements, which are most often mentioned as those having an impact on most of generally known investment-related decisions. It is evident from the calculations that three centres of rural communes with an investment potential being above the average can be distinguished in the Province. It is especially true of those communes which are located in the east and south-east part of the Province, including Nowy Dwór Gdański, Nowy Staw, Sztum and Pszczółki. However, each of them has slightly different conditions as regards the categories accepted for the calculations, or the human capital, infrastructure, market of services etc.
Piotr Doerffer, Możliwości badawcze IMP PAN w zakresie turbin wiatrowych, s. 270-274
Potential of IMP PAN for wind turbine aerodynamics research
Different principles of wind turbines, their advantages and limits are presented and discussed. The research potential of Institute of Fluid-Flow Machinery in the field of small and offshore wind turbines is described.
Michał Górski, Adam Cenian, Skojarzona produkcja ciepła i energii elektrycznej z promieniowania słonecznego, s. 275-281
Cogeneration from sun energy
The paper presents possibilities of simultaneous production of heat and electricity from solar radiation. Different types of available solutions, in particular PVT devices and direct coupled solar systems are discussed. It seems that such approach is very promising new way for the solar industry.
Jan Iwaszkiewicz, Superkondensatory – magazyny energii elektrycznej, s. 282-291
Supercapacitors – electric energy storing devices
A quantity of energy produced by renewable sources as wind farms or solar panels is unstable and changes in time in unpredictable manner. It results in serious problems with efficient use of produced energy as well as problems with control and management of generating plant including several networked renewable sources. To solve these problems it is necessary installing buffering electric energy storages capable to accept short-time bursts of energy and to maintain output voltage at declines of energy generation. The new energy storing elements are supercapacitors featuring high capacity, ability to accepts and generate very big currents (few kA) and long operational life – it creates good perspectives for supercapacitors cooperation with renewable energy sources. Recently two different designs of supercapacitors where developed -prismatic and stacked supercapacitors. The stacked supercapacitors are featuring lower energy density than pristmatic ones, but much bigger power i.e. ability to work with big currents and low losses. It results in serious problems with efficient use of produced energy as well as problems with control and management of generating plant including several networked renewable sources. To solve these problems it is necessary installing buffering electric energy storages capable to accept short-time bursts of energy and to maintain output voltage at declines of energy generation. Several models of the stacked supercapacitors manufactured with voltage from 14V to 700V, including high-voltage models with voltage from 300V to 700V. It enables application of these supercapacitors in power industry. This fact resulted at initiating at the Gdansk Brach of Electrotechnical Institute a R+D work on supercapacitors, especially the stacked ones. The work is includes development of the supercapacitor technology as well as application of supercapacitors at the electric energy storing and processing systems. The research on stacked supercapacitors is performed within European project Cost Action 542: HPSMT – High Performance Energy Storages for Mobile and Stationary Applications. Cost Action 542 was established within European Union program COST: (European Cooperation in the Field of Scientific and Technical Research) and initiated on March 29/30, 2006.
Jan Iwaszkiewicz, Tomasz Rawiński, Bogdan Sedler, Powstanie inteligentnych sieci elektroenergetycznych – niezbędny warunek rozwoju i wykorzystania zielonej energetyki: odnawialnych źródeł energii, s. 292-305
Implementing smart power grid – a necessary requirement to develop and utilize green energy: renewable energy sources
Development of economy and increasing importance of electric energy, as well as the extensive plans for implementing of REN: Renewable Energy Sources and formation of “digital economy” result in a need to develop and implement new, smart power grid. It is caused by imperfection and weakness of existing power grid. The smart grid will feature several new functionalities and operational capabilities. The smart networks will be developed over long period of time through implementing several new technologies, mainly in the area of communications, control and cooperation with customers. The most fundamental change necessary to develop a fully realized smart grid is change of a topology of energy flow. At existing grids the energy flow is one-way – from large generation plants to customers. The grid of the future will necessarily be a two-way system where power generated by a multitude of small, distributed sources – in addition to large plants – flows across a grid based on a network rather than a hierarchical structure. The transition from the grid we know today to the a fully realized smart grid of tomorrow will result in benefits for several players and participants of power industry and energy market. Utilities will experience lower distribution losses and reduced costs. Consumers will gain greater control over their energy costs and more reliable energy supply. The environment will benefit from reduction in emissions of CO2, as well as pollutants. Realizing smart grids’ potential will require a new level of cooperation between industry players, advocacy groups, the public and especially the regulatory bodies that have immediate influence over the process of grid change. In the end, though, a fully realized smart grid will benefit all stakeholders.
Zdzisław Kusto, Porównanie elektrowni wiatrowych w szacowanej produkcji energii elektrycznej oraz dopasowaniu do danych warunków wiatrowych, s. 306-321
Comparison of wind Power stations and estimation of electricity production and adaptation to the wind conditions
A generation characteristics (GC) of wind power stations (WPS) are described on the paper. The GC are a compilation of the WPS power curve and the annual wind data (WMD) described by the Weibull function. Implementation of GC – individual for every WPS – leads to the very simple choice of the best WPS to the wind data. The annual changes of WMD have a very great influence on the annual electricity production and have a great inconvenience for forecasting of the wind power system development.
Zdzisław Kusto, Tadeusz Noch, Metoda kosztów narastających w ocenie ekonomicznej efektywności przedsięwzięć inwestycyjnych w energetyce rozproszonej, s. 322-345
The incremental cost method in the assessment of the economic efficiency of investment in the dissipated energy power engineering
The calculation of the economic efficiency of a small installation employing unconventional energy sources, which are included in the category of dissipated (energy) sources, is performed by way of comparison of the cost of generating the heat and/or electricity to the cost of generating the electricity in a conventional installation. The article describes a method of increasing costs (MKN), which resembles the long-recognized method of LCC.
Tadeusz Noch, Pompa ciepła a energia słoneczna w zapotrzebowaniu na ciepło, s. 346-364
The heat pump and the solar energy in heat demand
The paper "The Heat Pump and the Solar Energy in Heat Demand" presents the energy efficiency of the heat pump. It focuses on the issues of operational costs of heat pumps. The heat gain from solar energy was characterized. The analysis included seasonal heat demand for heating. The research and calculations take into account the occurring heat loss as well as the heat gains coming from the sun and the internal sources to the inclusion of the degree of their use.
Anna Lisowska-Oleksiak, Andrzej P. Nowak, Monika Wilamowska, Katarzyna Szybowska, Elektrochemiczne Układy Stosowane w Urządzeniach do Magazynowania Energii, s. 365-369
Electrochemical systems for energy storage devices
A reliable large–scale method of storing power is required. The development of high capacity energy storage devices during last 20 years in the history of chemical power sources (CPS) are seen as an extreme move forward. That strong progress was stimulated by the commercialization of mobile electronic equipment in the early 80s. New types of devices emerged as a result of improved or novel electrode and electrolyte materials. In the early 90s we witnessed the commercialization of high power accumulators. Materials for electrochemical capacitors, cheap materials for harvesting solar light and materials for novel Lithium rechargeable batteries able to power electric vehicles are discussed in the paper.
Wojciech Litwin, Pierwsza w Polsce pasażerska jednostka pływająca z zasilaniem solarnym, s. 370-378
The first in Poland passenger solar vessel
The research and development of solar-energy-driven ships, which uses solar panel and electric engines is discussed. The prototype construction is presented.
Jörg Mayer, Inteligentna sieć (smart grid / Combined Power Plant) w Kassel, s. 379-388
Smart grid / Combined Power Plant in Kassel
The secure and constant provision of power anywhere and at anytime by renewable energies is now made possible thanks to the Combined Power Plant. The Combined Power Plant links and controls 36 wind, solar, biomass and hydropower installations spread throughout Germany. It is just as reliable and powerful as a conventional large-scale power station. The Combined Renewable Energy Power Plant shows how, through joint control of small and decentralised plants, it is possible to provide reliable electricity in accordance with needs.
- Paweł Bakun, Damian Gadzialski, Projekt Energetyczny Dom, s. 390-399
- Marcin Zagórski, Program Energa Biogaz, s. 400-404
- Carlo Gonella, Energia z odpadów komunalnych przy wykorzystaniu praso-ekstrudera VMpress, s. 405-408
- Christian Hemerka, Nowoczesne instalacje biogazowe firmy PPM – technologia i zastosowania w Polsce, s. 409-413
- Aleksandra Łukaszek, Wojciech Łukaszek, ELECTRA© bezodpadowa i bezwonna produkcja biogazu i energii elektrycznej, s. 414-421
- Krzysztof Puzdrowski, WELtec BioPower® – efektywność ze stali szlachetnej, s. 422-426
- Science2Business – projekt wsparcia dla innowacyjnych technologii, s. 427-429